Videncia gratis

Versión completa: UNDERSTANDING ULTRAVIOLET LED APPLICATIONS AND PRECAUTIONS
Actualmente estas viendo una versión simplificada de nuestro contenido. Ver la versión completa con el formato correcto.
UNDERSTANDING ULTRAVIOLET LED APPLICATIONS AND PRECAUTIONS

Ultraviolet light occurs between the visible and x-ray spectrums. The Ultraviolet wavelength range is specified as 10 nm

to 400 nm; however, many optoelectronic companies also consider wavelengths as high as 430nm to be in the UV range.

Ultraviolet light gets its name due to the violet color it produces in the visible portion of the spectrum although much of

the output of UV light is not visible to the human eye.






UV LEDs have seen tremendous growth over the past several years. This is

not only the result of technological advances in the manufacturing of solid state UV devices, but the ever increasing demand

for environmentally friendly methods of producing UV light which is currently dominated by mercury lamps. The current

offering of  UV LED modules in the optoelectronics market consists

of product ranging from approximately 265nm – 420nm with a variety of package styles including through-hole, surface mount

and COB (Chip-On-Board). There are many unique applications for UV LED emitters; however, each is greatly dependent on

wavelength and output power. In general, UV light for LEDs can be broken down into 3 general areas. 






The upper UVA type devices have been available since the late 1990s. These LEDs have been traditionally used in

applications such as counterfeit detection or validation (Currency, Driver’s license, Documents etc) and Forensics (Crime

scene investigations) to name a few. The power output requirements for these applications are very low and the actual

wavelengths used are in the 390nm – 420nm range. Lower wavelengths were not available at that time for production use. As a

result of their longevity in the market and the ease of manufacturing, these type LEDs are readily available from a variety

of sources and the least expensive of all UV product. The middle UVA LED

component area has seen the greatest growth over the past several years. The majority of applications in this

wavelength range (approximately 350nm – 390nm) are for UV curing of both commercial and industrial materials such as

adhesives, coatings and inks. LEDs offer significant advantages over traditional curing technologies such as mercury or

fluorescent due to increased efficiency, lower cost of ownership and system miniaturization. The trend to utilizing LEDs for

curing is increasing as the supply chain is continually pushing to adopt LED technology. Although the costs of this

wavelength range is significantly greater than the upper UVA

LED module
area, rapid advances in manufacturing as well as increasing volumes are steadily driving down prices.






The lower UVA and upper UVB ranges (approximately 300nm – 350nm) are the most recent introduction to the market place.

These devices offer the potential to be used in a variety of applications including UV curing, biomedical, DNA analysis and

various types of sensing. There is significant overlap in all 3 of the UV spectral ranges; therefore, one must consider not

only what is best for the application, but also what is the most cost-effective solution, since the lower in wavelength,

typically the higher the LED cost. The lower UVB LED and upper UVC

ranges (approximately 250nm – 300nm) is an area that is still very much in its infancy, however, there is great enthusiasm

and demand for this product in air and water purification systems. There are currently only a handful of companies that are

capable of manufacturing UV LEDs in this wavelength range and even a smaller amount that are producing product with

sufficient lifetime, reliability and performance characteristics. 






As a result, the costs of devices in the UVC/B range are still very high and can be cost prohibitive in some

applications. The introduction of the first commercial UVC LED based

disinfection system in 2012 has helped to move the market forward to where many companies are now seriously pursing LED based

products. Precautions A common question regarding ultraviolet LEDs is: Do they pose any safety risks? As described

above, there are different levels of UV light. One of the most commonly used and familiar sources for producing UV output is

the black light bulb. This product has been used for decades to produce a glowing or fluorescence affect on specific types of

posters as well as for other applications such as the authentication of paintings and currency.